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Abstract. We reconsider the dimension-11 Planck scale, the physical scale of the eleventh dimension, the
physical scale of the Calabi–Yau manifold and the coupling in the hidden sector in M-theory on S1/Z2.
Also we discuss reasonable bounds on them. Considering the F-term of the dilaton and moduli SUSY
breaking and choosing two representative points which correspond to the scalar quasi-massless scenario
and the dilaton dominant SUSY breaking scenario, respectively, we analyze experimental constraints on
the parameter space. The sparticle spectrum and some phenomenological predictions are also given.

1 Introduction

In recent years revolutionary progress in our understand-
ing of string theories has been made. The key discover-
ies were dualities, which show that the five distinct su-
perstring theories are in fact five different perturbative
expansions of a single underlying theory (11-dimensional
M-theory or 12-dimensional F-theory) about five different
points in the moduli space of consistent vacua. The duali-
ties, furthermore, show that in addition to the five points
of the moduli space, there is a sixth special point in the
moduli space which involves an 11-dimensional Minkowski
space-time and is related to the strongly coupled heterotic
(HE) and IIA superstring theories by compactifications on
S1/Z2 and S1, respectively [1]. Nowadays we do not have
a complete picture of M-theory so that one might argue
that it is premature to make any attempt at phenomenol-
ogy. However, our experience in investigating weakly cou-
pled E8 ×E′

8 HE superstring phenomenology tells us that
it may be that the corners of the moduli space capture
most of the features of the theory relevant for low-energy
phenomenology.

Since Horava and Witten [2] described the strongly
coupled E8 ×E′

8 HE string theory by M-theory compacti-
fied on S1/Z2 whose low-energy limit is the 11-dimensional
supergravity, many interesting implications for the phe-
nomenology have been studied: Newton’s constant and
compactification, gluino condensation and supersymmetry
breaking, axions and the strong CP problem, the thresh-
old scale and strong coupling effects, proton decay, and
phenomenological consequences [3–26] (for a review, see
[27]). In short, all of the above results seem to show that

M-theory is a better candidate than the previous weakly
coupled heterotic string theory.

The most important discovery in M-theory phe-
nomenology is that the discrepancy between the grand
unification scale of around 2× 1016 GeV estimated by ex-
trapolating from the LEP measurements and the estimate
of around 4 × 1017 GeV calculated in the weakly coupled
E8 ×E′

8 HE string theory may be removed in the strongly
coupled E8×E′

8 HE string theory. In Horava and Witten’s
picture, at one end of the 11th dimensional line segment of
length πρ live the observable fields contained in E8, at the
other end live the hidden sector fields contained in E′

8, and
in the middle (“bulk”) propagate the gravitational fields.
One further needs to consider R4 ⊗ XCY (XCY denotes a
6-dimensional Calabi–Yau manifold) compactification of
the 10-dimensional E8 ×E′

8 HE string in order to get a re-
alistic effective theory. Therefore, there are several scales
and couplings such as the dimension-11 Planck scale, the
physical scale of the eleventh dimension, the physical scale
of the Calabi–Yau manifold and the couplings in the ob-
servable and hidden sectors. The values of these scales
and couplings and the relations between them have been
estimated [3,12,15].

Because the values of the scales and couplings are im-
portant for the phenomenology and there are some issues
which need to be discussed, in this paper we shall first re-
consider the dimension-11 Planck scale, the physical scale
of the eleventh dimension, the physical scale of the Calabi–
Yau manifold and the coupling (in terms of the function x
which is defined by x = (αHα

−1
GUT − 1)/(αHα

−1
GUT + 1)) in

the hidden sector in M-theory on S1/Z2 in standard em-
bedding and non-standard embedding [23–26], and then
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discuss the possible bounds on them from the ansatz that
the dimension-11 Planck scale is larger than the MGUT,
MH which is the scale in the hidden sector just after the
Calabi–Yau manifold is compactified, the eleventh dimen-
sion scale being [πρp]

−1. For the standard embedding, we
obtain that the upper bound on x is 0.97 (x < 0.97), for
αGUT = 1/25.

An important scale which is directly relevant to phe-
nomenology is the scale ΛSUSY from which the soft terms
start running. There is a significant difference for ΛSUSY
between the weakly coupled and strongly coupled limits.
In the weakly coupled limit ΛSUSY is close to MPl since
observable and hidden sector fields as well as gravitational
fields all live in a same 10-dimensional space-time. In the
strongly coupled limit, as Horava [4] has argued, SUSY
breaking is not felt immediately in the observable sector
because of a topological obstruction (the 11th dimension
separates the two sectors). SUSY breaking in the hidden
sector communicates to the observable sector by gravita-
tional interactions. Therefore, SUSY breaking in the ob-
servable sector becomes apparent only after the renormal-
ization scale Q is low enough not to reveal the presence of
the 11th dimension anymore. Therefore, a natural and rea-
sonable choice is ΛSUSY = [πρp]

−1. We estimate the value
of [πρp]

−1 and get for a lower bound on it 9.5×1013 GeV.
In order to discuss the M-theory low-energy phe-

nomenology, we may need to pay attention to the su-
persymmetry breaking in M-theory and think about M-
theory model building (essentially compactifications of 6-
dimensional space-time), which is similar to what hap-
pened 10 years ago. As we know, we can discuss the su-
persymmetry breaking in the following ways: non-zero F-
terms of the dilaton or moduli fields SUSY breaking in
which we do not specify the trigger of the SUSY break-
ing [15,18,19], and the Scherk–Schwarz mechanism on the
eleventh (or fifth) dimension (or we might call it coordi-
nate-dependent compactification) [8,9]. In this paper we
consider the phenomenology in non-zero F-terms of the
dilaton and/or moduli SUSY breaking.

From the phenomenological view, the important fea-
tures of M-theory phenomenology which are different from
the weakly coupled limit and independent of the details of
M-theory model building concern unification of the cou-
plings and the magnitude of ΛSUSY and the emphasis of
this paper is on investigating the characteristic features
of low-energy phenomenology of M-theory. In this paper,
we take the simplest compactification as an example (like
most people did) and choose two representative points
which correspond to the scalar quasi-massless scenario and
dilaton dominant SUSY breaking scenario, respectively.
Then we calculate the low-energy sparticle spectrum un-
der the LEP experiment constraints and discuss its depen-
dence on ΛSUSY. It is found that M1/2 cannot be larger
than 400GeV if one demands that masses of sparticles are
not beyond 1TeV. We analyze the constraints to the pa-
rameter space from b → sγ. It is found that in the dilaton
dominant SUSY breaking scenario although b → sγ im-
poses stringent constraints to the parameter space, there
still is a region of the parameter space where tanβ is large

and M1/2 is small, which will lead to significant SUSY
effects in some processes.

In this paper, we discuss the scales and couplings in
the Sect. 2. In Sect. 3, we discuss soft terms. In Sect. 4 we
calculate the sparticle spectrum using revised ISAJET.
Section 5 is devoted to an analysis of the constraints from
b → sγ. We discuss the rare decay B → Xsτ

+τ− and the
search for Higgs bosons in Sect. 6. Finally, Sect. 7 contains
our conclusion.

2 Eleventh dimension scale
and gauge coupling in the hidden sector

First, let us consider the gauge couplings, gravitational
coupling and the physical eleventh dimension radius in
the M-theory. The relative 11-dimensional Lagrangian is
given by [2]

LB = − 1
2κ2

∫
M11

d11x
√
gR

−
∑

i=1,2

1
2π(4πκ2)2/3

∫
M10

i

d10x
√
g
1
4
F a

ABF
aAB . (1)

In the 11-dimensional metric1, the gauge coupling and
gravitational coupling in dimension-4 are [3,12]

8πG(4)
N =

κ2

2πρpVp
, (2)

αGUT =
1

2Vp(1 + x)
(4πκ2)2/3, (3)

[αH]W =
1

2Vp(1− x)
(4πκ2)2/3, (4)

where x is defined by

x = π2 ρp

V
2/3
p

( κ

4π

)2/3

×
∫

X

ω ∧ TrF ∧ F − 1
2TrR ∧ R

8π2 , (5)

where ρp, Vp are the physical eleventh dimension radius
and Calabi–Yau manifold volume (which is defined by the
middle point Calabi–Yau manifold volume between the
observable sector and the hidden sector) respectively, and
Vp = V e3σ where V is the internal Calabi–Yau volume
(for details, see [12]).

From the above formula, we obtain

x =
αHα

−1
GUT − 1

αHα
−1
GUT + 1

. (6)

The GUT scale MGUT and the hidden sector scale MH
when the Calabi–Yau manifold is compactified are

M−6
GUT = Vp(1 + x), (7)

1 Because we think that the 11-dimensional metric is more
fundamental than the string metric and the Einstein frame, we
discuss the scales and couplings in 11-dimensional metric
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M−6
H = Vp(1− x), (8)

or we can express the MH as

MH =
(

αH

αGUT

)1/6

MGUT =
(
1 + x

1− x

)1/6

MGUT. (9)

Noticing that M11 = κ−2/9, we have

M11 =
[
2(4π)−2/3αGUT

]−1/6
MGUT. (10)

We can also obtain the physical scale of the eleventh di-
mension in the 11-dimensional metric:

[πρp]
−1 =

8π
1 + x

(2αGUT)
−3/2 M3

GUT

M2
Pl

. (11)

Now, we consider the constraints. Our ansatz is that the
scale of MGUT, MH and [πρp]

−1 should be lower than the
11-dimensional Planck scale. From the constraints that
MGUT andMH be smaller than the scale ofM11, we obtain

αGUT ≤ (4π)2/3

2
, αH ≤ (4π)2/3

2
, (12)

or

αGUT ≤ 2.7, αH ≤ 2.7; (13)

these are independent numbers and they are large enough
for our discussion. For the standard embedding, we obtain
that the upper bound on x is 0.97 (x < 0.97), for αGUT =
1/25.

From the constraint that [πρp]
−1 is smaller than the

scale of M11, we obtain

MGUTα
−2/3
GUT ≤ √

1 + x21/6(4π)−4/9MPl, (14)

which is obviously satisfied for standard embedding. How-
ever, if we consider the non-standard embedding x < 0
[23–26], i.e., the gauge coupling in the observable sector
is larger than the coupling in the hidden sector, we will
have the following lower bound on x:

xlb ≥ 2−1/3(4π)8/9(αGUT)−4/3M
2
GUT

M2
Pl

− 1. (15)

Therefore, there exist three possibilities between the phys-
ical scale of the eleventh dimension and the physical scale
of the Calabi–Yau manifold: [πρp]

−1 is smaller thanMGUT
and MH which, from low energy to high energy, corre-
sponds to the range from dimension-4 to dimension-5 and
then, to dimension-11; [πρp]

−1 is smaller than MGUT but
larger than MH, which, assuming x11 is the coordinate
of the eleventh dimension, and the observable sector is
at x11 = 0 plane and the hidden sector at x11 =

∫
dx11

(g11,11)1/2 or the opposite plane, from low energy to high
energy, corresponds at one particular point x11

c , to the
range from dimension-4 to dimension-11 directly, for x11 <

x11
c , from dimension-4 to dimension-5 and then, to dimen-

sion-11, and for x11 > x11
c , from dimension-4 to dimension-

10 and then, to dimension-11; [πρp]
−1 is larger thanMGUT

and MH which, from low energy to high energy, corre-
sponds to the range from dimension-4 to dimension-10
and then, to dimension-11. Let us define the xH and xO

which correspond to [πρp]
−1 = MH and [πρp]

−1 = MGUT,
respectively. We write

[
(1 + xH)7

1− xH

]1/6

= 8π(2αGUT)−3/2M
2
GUT

M2
Pl

, (16)

xO = 8π(2αGUT)−3/2M
2
GUT

M2
Pl

− 1. (17)

It is obvious from (11) that when x decreases, [πρp]
−1

increases if we consider a specific αGUT and MGUT, so we
have xH ≥ xO ≥ xlb.

Now we can discuss the numerical result. We take
MGUT = 2.0 × 1016 GeV, αGUT = 1/25, MPl = 2.4 ×
1018 GeV; then we obtain M11 = 4.04 × 1016 GeV, xlb =
−0.96, xO = −0.92. Next we have xH = −0.878, [πρp]

−1

goes from 7.8× 1014 GeV to 1.5× 1015 GeV when we vary
x from 0.97 to 0 in the mean time for the standard em-
bedding. If we choose the MGUT to be 3 × 1016 GeV,
we obtain M11 = 6.05 × 1016 GeV, xlb = −0.91, xO =
−0.826, xH = −0.758, [πρp]

−1 goes from 2.64 × 1015 GeV
to 5.2 × 1015 GeV when we vary x from 0.97 to 0 in the
mean time. Also we notice that xlb, xO, xH increase if
we increase the MGUT. Therefore, if we had a large GUT
scale because of additional matter fields in the future M-
theory model building, we might need to pay attention to
xlb, xO, xH in order to get a clear picture of the universe.

Furthermore, we can discuss the possible low-energy
scale of [πρp]

−1 which is interesting for the low-energy
phenomenology when x > 0 for standard embedding. Let
us define the relation between the physical Calabi–Yau
manifold volume and the unification scale MGUT as in
[15]:

aM−1
GUT = (Vp(1 + x))1/6, (18)

where a > 1. a is smaller than 2.02 in order to keep
MGUT < M11 if we take αGUT = 1/25. The formula is
similar to the one above except for the transformation
MGUT → MGUT/a. Taking MGUT = 2.0 × 1016 GeV,
αGUT = 1/25, MPl = 2.4 × 1018 GeV, we get the lower
bound on [πρp]

−1: 9.5 × 1013 GeV. Using MGUT = 3.0 ×
1016 GeV, the lower bound is 3.2 × 1014 GeV. It follows
that ΛSUSY ≥ 1014 GeV, which is consistent with the es-
timate given in [15].

3 Soft terms

The Kähler potential, the gauge kinetic function and the
superpotential in the simplest compactification of M-the-
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ory on S1/Z2 are2 [15,17]

K = K̂ + K̃|C|2, (19)

K̂ = − ln[S + S̄]− 3 ln[T + T̄ ], (20)

K̃ =
(

3
T + T̄

+
α

S + S̄

)
|C|2, (21)

RefO
αβ = Re(S + αT )δαβ , (22)

RefH
αβ = Re(S − αT )δαβ , (23)

W = dxyzC
xCyCz, (24)

where S, T and C are dilaton, moduli and matter fields,
respectively. α is a next order correction constant which
is related to the Calabi–Yau manifold.

With this information, we have the following soft terms
[14,19]:

M1/2 =

√
3M3/2

1 + x

(
sin θ +

x√
3
cos θ

)
, (25)

M2
0 = M2

3/2 −
3M2

3/2

(3 + x)2
(x(6 + x) sin2 θ

+ (3 + 2x) cos2 θ − 2
√
3x sin θ cos θ), (26)

A = −
√
3M3/2

(3 + x)
((3− 2x) sin θ +

√
3x cos θ), (27)

where M3/2 is the gravitino mass; the quantity x defined
above can also be expressed as

x =
α(T + T̄ )
S + S̄

. (28)

We pick the following two points as representatives which
correspond to the scalar quasi-massless and the dilaton
dominant scenario. The soft terms and parameters for the
first point are

M1/2 = 0.989M3/2, M0 = 0.008M3/2, (29)

A = −0.761M3/2, x = 0.5838, tan θ = −4.566, (30)
and the soft terms and parameters for the second one are

M1/2 = 1.534M3/2, M0 = 0.870M3/2, (31)

A = −1.517M3/2, x = 0.13, θ =
π

2
. (32)

2 We choose this simplest case as an example. In fact, if we
consider three families and three moduli, in order to avoid
FCNC problems that might arise from the violation of the
universal scalar masses in three families (although this kind
of the violation might be very small), we might need to as-
sume that α1(T1 + T̄1) = α2(T2 + T̄2) = α3(T3 + T̄3), and
F T1 = F T2 = F T3 where αi i = 1, 2, 3 are the next order cor-
rection constants. Then, the final soft terms will be the same
as the simplest case. So it is reasonable to choose the simplest
case as an example to analyze the phenomenology

4 Mass spectra
and the permitted parameter space

We concentrate on the two typical supersymmetry break-
ing (SB) scenarios given in Sect. 3 to calculate the low-
energy spectrum of superpartner and Higgs bosons masses:
the scalar quasi-massless scenario corresponding to m0 =
8.09 × 10−4M1/2 and A = −0.769M1/2 (see (29), (30))
the dilaton dominant scenario corresponding to m0 =
0.567M1/2 and A = −0.989M1/2 (see (31),(32)). In order
to find the effects of the supersymmetry breaking scales
to low-energy phenomenology, we take the supersymme-
try breaking scales ΛSUSY as 2.0 × 1016 GeV (the GUT
scale), 1 × 1015 GeV, and 1 × 1014 GeV. The scales lower
than 1×1014 GeV are not chosen because of the analysis in
Sect. 2. But we will discuss their possible effects also. The
other two free parameters, B and µ, in the M-inspired
model are determined by the radiative breaking mecha-
nism of the electroweak symmetry: one of them is traded
off for tanβ, while for the other, only the freedom of sign
remains [28,31]. Thus, there are only two free parameters,
M1/2 and tanβ, plus the sign of µ in our model.

We require that the lightest neutralino be the lightest
supersymmetric particle (LSP) and use several experimen-
tal limits to constrain the parameter space, including

(1) the width of the decay Z → χ0
1χ

0
1 is less than 8.4MeV,

and the branching ratios of Z → χ0
1χ

0
2 and Z → χ0

2χ
0
2

are less than 2 × 10−5, where χ0
1 is the lightest neu-

tralino and χ0
2 is the other neutralino,

(2) the mass of the light neutral even Higgs cannot be
lower than 77.7GeV as the present experments re-
quired,

(3) the mass of the lighter chargino must be larger than
65.7GeV as given by the Particle Data Group [29],

(4) sneutrinos are larger than 43.1GeV,
(5) selectrons are larger than 58.0GeV,
(6) smuons larger than 55.6GeV, and
(7) staus larger than 45.0GeV.

We use ISAJET to do numerical calculations. In or-
der to include all effects of bottom and tau Yukawa cou-
plings, we made some modifications to ISAJET which are
the same as those in [30]. We first examine the M1/2 de-
pendence of sparticle and Higgs boson masses in the two
SUSY breaking scenarios. It is found that the masses in-
crease when M1/2 increase and M1/2 should not be larger
than 400GeV if one demands that the masses of super-
partner and Higgs bosons are below 1TeV. Then we scan
the boundaries of the parameter space in the two scenar-
ios, taking M1/2 from zero to 400GeV. For a certain sce-
nario, as pointed out above, there are only two free pa-
rameters, M1/2 and tanβ, as well as the sign of µ under
the radiative electroweak symmetry breaking mechanism.
The boundaries of the plane of the two parameters will
be determined by the consistence conditions, such as that
the input should naturally trigger electric–weak symmetry
breaking, the gauge unification, the Yukawa couplings are
in the perturbative range (no Yukawa coupling unification
is imposed), and there should be no tachyonic particles in



Chao-Shang Huang et al.: Scales, couplings revisited and low-energy phenomenology in M-theory on S1/Z2 397

a b

Fig. 1a,b. The upper and lower bounds of tanβ vary with M1/2, for the dilaton dominant and scalar quasi-massless scenarios
and for different values of ΛSUSY. The curve labeled 1 (2) represents the scalar quasi-massless (dilaton dominant) scenario. The
dotted line is for ΛSUSY = 1014 GeV, the dashed line 1015 GeV, and the solid line the GUT scale, 2 × 1016 GeV. For the scalar
quasi-massless scenario, the permitted parameter spaces are with closed boundaries, while for the dilaton dominant scenario,
the permitted parameter spaces are not closed in the right parts. a is for µ < 0, b is for µ > 0. The lower bound of tanβ is
about 1.6 for the dilaton dominant scenario

the mass spectrum, and also we have the experimental
limits listed above.

The results are shown in Fig. 1. The curves in Fig. 1
represent the upper bound and lower bound of tanβ for
each M1/2, for two different SB scenarios, and different
ΛSUSY. Figure 1a shows the boundaries for µ < 0, Fig. 1b
for µ > 0. The dotted line represents ΛSUSY equals
1014 GeV, the dashed line 1015 GeV, and the solid line
the GUT scale, 2.0 × 1016 GeV. The curves marked 1 (2)
are the boundaries of the parameter spaces in the quasi-
massless scenario (the dilaton dominant scenario). For the
scalar quasi-massless scenario, the permitted parameter
spaces are the areas enclosed with closed boundaries, while
for the dilaton dominant scenario, the permitted param-
eter spaces are not closed in the right parts. The lower
boundary of tanβ is about 1.6 for the dilaton dominant
scenario. It is obvious from Fig. 1 that for the scalar quasi-
massless scenario, the parameter space is tightly con-
strained to the low mass spectrum and there is no large
tanβ region by consistence conditions, which is similar to
what was found in [11,20], while for the dilaton dominant
scenario there is a much larger parameter space allowed.

The effect of the sign of µ to the permitted parameter
space is significant, as can be seen by comparing Figs. 1a
and b. For example, in the scalar quasi-massless scenario
and ΛSUSY=1014 GeV, if µ < 0, the parameter space is
completely excluded, while as µ > 0, there does exist an
allowed region. The shape of the boundaries of the pa-
rameter space for different signs of µ also agrees with this
effect. But the effect in the dilaton dominant scenario is
not as sensitive as in the quasi-massless scenario.

It is interesting that for the case of the dilaton dom-
inant scenario and µ < 0, the lower boundary of tanβ is
singly determined by the experimental limit of the light
Higgs mass. If the limit increases, the lower boundary
will increase correspondingly. This may be understood
from the tree level formula of the mass of the light Higgs,
while the upper bound of tanβ is determined by both
some experimental limits and the LSP condition. For ex-
ample, when ΛSUSY is 1014 GeV, M1/2 from 84.7GeV to
88.2GeV, the upper bound is determined by the require-
ment that the mass MZ of the Z0 boson should be less
than 2mũl

, 2mẽl
, 2mẽr , 2mτ̃1 , 2mb̃1

, and 2mt̃1
; from

88.2GeV to 102.0GeV, it is determined by mχ±
1
> 65.7
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a b

Fig. 2a,b. Computed values of super-particle masses versus tanβ for M1/2 = 120GeV in the dilaton scenario. a is for ΛSUSY =
1014 GeV and b 1 × 1016 GeV. The solid (dashed) lines represent µ > (<)0

GeV; from 102.0GeV to 400GeV by the LSP condition.
The increase of the mass of the lighter chargino will gen-
erate a change of the upper limit of tanβ in the range,
from about 85GeV to 105GeV, of M1/2, but the change
is not drastical. The numerical results are not sensitive to
changes in the lower limits on masses of sneutrinos, selec-
trons, smuons and staus. That is, if using the up to date
data on the masses instead of those used in the paper,
Fig. 1 will not be changed.

An interesting aspect of the allowed parameter space
of the dilaton dominant scenario is that there exists a re-
gion where the mass spectrum is low while tanβ is large.
From Fig. 1, one obtains that the region increases when
ΛSUSY decreases in both the µ < 0 and the µ > 0 case.
We find that if the bound of the lighter chargino mass in-
creases, the region will be reduced. We know that b → sγ
puts a very stringent constraint upon the parameter space
of the MSSM. In this region, the charged Higgs mass is
about 150GeV and consequently it will lead to a signif-
icant contribution to b → sγ. Therefore we would like
to ask whether such a region can pass the constraint of
b → sγ. We will answer this question in the next section.

We illustrate the tanβ dependence of the mass spectra
in the dilaton dominant scenario in Fig. 2, where we have
chosen M1/2 = 120GeV. We have chosen this value of
M1/2 because it is in the region of the parameter space

pointed out above and, as noticed in [30], a study of this
point serves to nicely illustrate the importance of large
tanβ effects on Tevatron signals. The spectra are drawn in
the same graph for µ > 0 and µ < 0 denoted by solid and
dashed lines, respectively. In Fig. 2a, the supersymmetry
breaking scale is 1014 GeV, while in Fig. 2b, the scale is 1×
1016 GeV. It is apparent that the mass spectrum will drop
with the decrease of ΛSUSY, just as given in [11], because
the mass spectra depend on the length of the running scale
of the soft terms. The shorter the length, the lower the
mass spectrum. This relation between the length of the
running scale and mass spectra will keep till the ΛSUSY
is lower than 109 GeV. It is evident from Fig. 2 that the
sign of µ can affect the spectrum, though not significantly.
It is also manifest from the figure that the upper bound
of tanβ is given by the LSP condition. The figure vividly
shows the competition between the lightest neutralino and
light stau for the LSP position. Another property worthy
of mention is that most sparticles are insensitive to tanβ
when tanβ is large except mτ̃1 mA0 and mH± .

5 Constraints from b → sγ

It is well known that b → sγ put a very stringent con-
straint on the parameter space of various models [33,34].
In this section we analyze the constraints from b → sγ
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on the permitted parameter space discussed in the last
section.

Five different sets of contributions to the decay b →
sγ are present in supersymmetry. These can be classified
according to the virtual particles exchanged in the loop:

(a) the SM contribution with exchange of W− and up-
quarks;

(b) the charged Higgs boson contribution with H− and
up-quarks;

(c) the chargino contribution with χ̃− and up-squarks (ũ);
(d) the gluino contribution with g̃ and down-squarks (d̃);

and finally
(e) the neutralino contribution with χ̃0 and down-squarks.

As pointed out in [48,31], contributions from neu-
trilino-down type squark (e) and gluino-down type squark
(d) loop diagrams are, in general, negligible compared to
those from chargino-up type squark diagrams because the
flavor mixings between the third and the other two gener-
ations are small in minimal supergravity and constrained
MSSM. However, in the large tanβ case, as shown in [35,
34], the gluino contribution can compete with the charged
Higgs contribution in some regions of parameter space
in mSUGRA where the lighter sbottom is light and the
gluino mass is not large. In our model the two types of
spectra are different from those in [35] and the regions
in which we do the analysis are different from those in
which the gluino contribution is important. Actually, in
the region we considered, the mass of the lighter sbot-
tom is about 230GeV and the gluino mass is larger than
350GeV so that the gluino contribution is not important,
as can be seen from Fig. 11 in [35]. Moreover, in this region
the mass of charged Higgs boson is equal to 150GeV so
that its contribution is significant. It seems that the gluino
contribution might still not be important in our case. Al-
though the neutralino contribution can increase for large
tanβ, it does not remain big enough to compete with those
from charged Higgs and SM [35]. Therefore, in addition
to the contributions from SM and charged Higgs bosons,
we only include the contributions from chargino-up type
squark loop diagrams and call them SUSY contributions
for the sake of simplicity in this paper. A detailed analysis
of the gluino contributions in our model is needed and will
be written down elsewhere.

It is known since long ago that a supersymmetric con-
tribution can interfere either constructively or destruc-
tively [36–40], which is determined by the sign of µ. For
µ < 0, the SUSY contribution interferes destructively with
the Higgs’s and W ’s contributions. With the spectrum of
sparticles low, both charged Higgs and supersymmetric
particles can largely contribute to the process. So even
if the charged Higgs has large contributions, the super-
symmetric contribution will cancel its effect and, for large
tanβ, can even overwhelm its and W ’s contributions and
force the C7 (C7 is the Wilson coefficient of the operator
O7 in the effective Hamiltonian, (33), and the branching
ratio of b → sγ is determined by |C7|2) to change sign
from positive to negative while keeping the branch ratio
still safely in the bounds of experiments.

As we pointed out in the last section, there exists a re-
gion where the mass spectrum is low while tanβ is large.
It is known that a supersymmetric contribution is propor-
tional to tanβ in this region. So it is expected that in this
region the supersymmetric contribution will be very large.

Figure 3 shows the b → sγ constraint. The curves in
Fig. 3a which have a dip correspond to the upper limit of
tanβ, while the other ones correspond to the lower limit
of tanβ. The curves in Fig. 3b which have a convex shape
correspond to the upper limit of tanβ, while the other ones
correspond to the lower limit of tanβ. The experimental
bounds of b → sγ are translated into the bounds of C7,
denoted by the two solid horizontal lines. But it should
be recalled that C7 can be either negative or positive. So
we map the allowed parameter space into the plane of
M1/2 and C7. Because there is a large uncertainty (about
±25%) in the leading order (LO) calculation of the b → sγ
branching ratio we draw in the Fig. 3 two dashed horizon-
tal lines corresponding to |C7|(1 + 0.3) and |C7|(1 − 0.3),
respectively, in order to take the theoretical uncertainty
into account. Figure 3a is for µ < 0. It is apparent that for
ΛSUSY= 2 × 1016 GeV if the theoretical error is kept into
account the allowed region of the quasi-massless scenario
can safely pass the experimental constraint due to the
cancellation of the supersymmetric contribution to that of
charged Higgs bosons when tanβ increases as shown by the
line corresponding to the upper limit of tanβ. For the dila-
ton dominant scenario and ΛSUSY equal to 2× 1016 GeV,
we can see from Fig. 3a that a quite large region is outside
the experimental bound even if keeping the theoretical
uncertainty into account. This is because in this region
the SUSY contribution is not large enough to make C7
still in the experimental bound after cancelling out con-
tributions of the charged Higgs and W bosons. For the
case of ΛSUSY=1014 GeV, one can see from Fig. 3a that
there is a region where the supersymmetric contribution
indeed overwhelms the charged Higgs’s and W ’s contri-
butions and makes C7 change sign. In this region tanβ
is large and the mass spectrum is low. This region has
an interesting phenomenology which has been analyzed in
[30–32,41,42] and we shall discuss it in the next section.
Recently, in order to make a more precise theoretical pre-
diction, much literature was devoted to NLO corrections
of this process [43–45]. It would be interesting to extend
the analysis in this paper to include NLO corrections.

Figure 3b is devoted to µ > 0. It is known that in such a
case the supersymmetric contribution interferes construc-
tively. But there still exists a small tanβ region for both
scenarios in which the constraint from b → sγ can be sat-
isfied within the theoretical uncertainty. One can see from
the figure that for the dilaton dominant scenario, almost
all of the large tanβ region is excluded by the b → sγ
constraint.

For the dilaton dominant scenario and µ < 0, it is
possible to distinguish the interesting region where the
mass spectrum is low and tanβ is large from the region
where the mass spectrum and tanβ both are large. We
shall discuss this possibility in an analysis of the rare decay
b → sτ+τ−.
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a b

Fig. 3a,b. The variation of C7 with M1/2 and tanβ, scenarios and ΛSUSY. The solid lines represent ΛSUSY = 2× 1016 GeV, the
dotted lines represent ΛSUSY = 1 × 1014 GeV. The curve labeled 1 (2) represents the scalar quasi-massless (dilaton dominant)
scenario. a is for the case µ < 0, b for the case µ > 0. The experimental constraint of b → sγ has been translated to the
constraint on C7, which is represented by two sets of solid horizontal lines and two sets of dashed horizontal lines. The solid
lines correspond to the LO values of C7 and the dashed ones to the values with which 30% theoretical error of the LO calculation
has been taken into account. The curves in a which have a dip correspond to the upper limit of tanβ, while the other ones
correspond to the lower limit of tanβ. The curves in b which have a convex shape correspond to the upper limit of tanβ, while
the other ones correspond to the lower limit of tanβ

6 Some phenomenological predictions

We now proceed to the analysis of low-energy phenomenol-
ogy. We shall discuss the rare decay b → sτ+τ− and Higgs
boson productions e+e− → bb̄H. In order to search signif-
icant SUSY effects we shall concentrate on the case of the
dilaton dominant scenario and µ < 0.

6.1 Decay b → sτ+τ−

The effective Hamiltonian relevant to the b → sl+l− pro-
cess is

Heff =
4GF√

2
VtbV

∗
ts

(
10∑

i=1

Ci(µ)Oi(µ) +
10∑

i=1

CQi(µ)Qi(µ)

)
(33)

where Oi (i = 1, 2, . . . , 10) are given in [46], and the Qi’s
come from exchanging neutral Higgs bosons and have been
given in [47]. The coefficients Ci(mw) and CQi(mw) in
SUSY models have been calculated [48–50,31,32]. The for-
mulas of the invariant mass distribution and the backward-
forward (B–F) asymmetry for b → sτ+τ− in the large
tanβ case have been given in3 [31,47]. The branching ratio

3 For the earlier references on b → sτ+τ−, see, for example,
the references in [47]

and B–F asymmetry depend on the coefficients C7, C8, C9,
CQ1 and CQ2 .

As was pointed out in [31,32], once CQ1 and CQ2 can
compete with C8 and C9, both the invariant mass distribu-
tion and the backward–forward asymmetry will be greatly
modified. The values of CQ1 and CQ2 depend on the mass
splitting and the mixing angle of stops, the masses of
charginos and diagonalizing matrices U and V , the masses
of neutral Higgs bosons, and tan3β when tanβ is large. For
small masses of the light chargino and neutral Higgs bo-
son, there are large mass splitting of the stops and large
tanβ, and CQ1 and CQ2 can be very large.

It is noted in the last section that, in the case of the
dilaton dominant scenario, µ < 0 and ΛSUSY=1014 GeV,
after taking into account the constraint of b → sγ, there
does exist a region (we shall call it region A) of the pa-
rameter space where the masses of the sparticles are lower
and tanβ can go up to 25. In Fig. 4, we map the allowed
parameter space into the CQ1 and M1/2 plane and the
CQ2 and M1/2 plane, respectively. The lower boundary of
tanβ corresponds to the line near the M1/2-axis, while the
upper boundary corresponds to the other line. It is obvi-
ous that the values of CQ1 and CQ2 indeed are very large
in this region. We choose M1/2 = 110GeV and tanβ = 23
as a representative point in the region and the values of
CQi

(i = 1, 2) as well as Ci (i = 7, 8, 9) at the point are
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Fig. 4. For the case of the dilaton dominant scenario, µ < 0
and ΛSUSY = 1014 GeV, the variation of CQ1 and CQ2 with
M1/2 and tanβ. We map the permitted parameter space plane
into the CQi and M1/2 planes. The lower boundary of tanβ
corresponds to the line near the M1/2-axis, while the upper
boundary corresponds to the other line

tabulated in Table 1. It is also noticed in the last section
that there is another region (we shall call it region B) in
the allowed parameter space where the mass spectrum and
tanβ both are large. In region B, because tanβ can be up
to 33, CQ1 and CQ2 can also compete with C8 and C9. But
the values of CQ1 and CQ2 in this region are smaller when
compared with those in region A. In order to distinguish
this region from region A we have chosenM1/2 = 400GeV
and tanβ = 31 as a representative in this region to do cal-
culations. The values of CQi

(i = 1, 2) and Ci (i = 7, 8, 9)
at the point are also tabulated in Table 1. One can see
from this table that a typical CQ1 in region A is −16,
while a typical CQ1 in region B is −4.5. Some masses of
sparticles used in computations are listed in Table 2.

The numerical results of the invariant mass distribu-
tion and the B–F asymmetry for the two sets of values
of coefficients CQi

and Ci given in Table 1 are shown in
Fig. 5. It is obvious that the deviation from SM is very
large for both cases, but for set A the deviation is more
drastic. The enhancement of the differential branching ra-
tio dΓ/ds in the case of set A can reach 300% compared to
SM. Meanwhile,the difference between set A and set B is
also very significant so that one can distinguish them from
the measurements of b → sτ+τ−. It should be noted that

Fig. 5. The invariant mass distribution of the dilepton and
B–F asymmetry for the process b → sτ+τ−. The related coeffi-
cients and masses are listed in Tables 1 and 2, respectively. The
solid line is for the SM prediction, the dashed line corresponds
to the prediction of set A, the dotted line to the prediction
of set B. We find that without including the contributions of
neutral Higgs bosons, the deviation from SM is small

without including the contributions of the neutral Higgs,
the deviation from SM is small.

6.2 e+e− → bb̄H

The Higgs boson is the missing piece and also the least
known of the standard model and supersymmetrical mod-
els. The pursuit of the Higgs bosons predicted by these
models is one of the primary goals of the present and next
generation of colliders. The Next Linear Collider (NLC)
operating at a center-of-mass energy of 500–2000GeV
with a luminosity of the order of 1033 cm−2 s−1 may pro-
vide an ideal place to search for the Higgs bosons, since
the events would be much cleaner than in the LHC and
the parameters of the Higgs bosons would be easier to
extract.

Based on the analysis in previous sections, we will
present some data examples of the cross sections for the
process e+e− → bb̄H in this subsection. In Fig. 6 we show
the SM Higgs production cross section as a function of
the Higgs mass. In Figs. 7 and 8, we show the produc-
tion cross sections as a function of tanβ, where M1/2 =
120GeV and 400GeV, respectively, and the other param-
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Table 1. The values of CQi (i = 1, 2) and Ci (i = 7, 8, 9) for the chosen
representative points in the regions A and B

M1/2 tanβ C7 C8 C9 CQ1 CQ2 BR(b → sγ)

Set A 110 23 -0.25 -3.08 4.12 -16.64 16.36 2.14 × 10−4

Set B 400 31 0.24 -3.06 4.50 -4.35 4.30 2.0 × 10−4

Table 2. The masses of sparticles used in the computations for the chosen representative
points in region A and B

mq̃ mt̃1
mt̃2

mχ1 mχ2 mh0 mH± mτ̃1 mχ0
1

Set A 246.30 162.95 336.86 73.58 192.56 103.13 153.31 50.18 50.16
Set B 797.60 575.75 784.00 332.08 512.48 116.68 464.21 206.67 206.60

Fig. 6. The cross sections of the process e+e− → bb̄H as a
function of the mass of the SM Higgs boson mH

eters are depicted in the figure captions. As usual, h0

and H0 denote the CP -even neutral Higgs bosons with
mh0 < mH0 , respectively. It should be noticed that, as
M1/2 = 400GeV, the mass of H0 is too heavy to be
produced by the NLC when s1/2 = 500GeV. Comparing
Figs. 7 and 8 with Fig. 6, it is evident that the Higgs pro-
duction cross sections increase significantly when tanβ in-
creases, as expected, except for bb̄h0 in the case of M1/2 =
400GeV. For the bb̄h0 production, the enhancement of
large tanβ is offset by the small sinα because in the case
of M1/2 = 400GeV, mh0 is much smaller than the masses
of the other Higgs bosons.

7 Conclusions

We have reconsidered the 11-dimensional Planck scale, the
physical scale of the eleventh dimension, the physical scale

Fig. 7. The cross sections of the process e+e− → bb̄H
(H = h0, H0) as a function of tanβ, where M1/2 = 120GeV,
ΛSUSY = 1014 GeV and Sign(µ) = −1 in the dilaton dominant
scenario

of the Calabi–Yau manifold and the coupling in the hid-
den sector in M-theory on S1/Z2 and discussed reasonable
bounds on them with the ansatz that the scale of MGUT,
MH and [πρp]

−1 should be lower than the dimension-11
Planck scale. It has been shown that ΛSUSY ≥ 1014 GeV
if one assumes ΛSUSY = [πρp]−1 [11]. Choosing two rep-
resentative points which correspond to the scalar quasi-
massless scenario and dilaton dominant SUSY breaking
scenario, respectively, we have calculated the sparticle
spectra at different values of ΛSUSY and found that the
spectra are lower when ΛSUSY decrease. Therefore, com-
pared with the spectra in the weakly coupling string mod-
els and general SUSY GUT models, the spectra in M-
theory phenomenology are lower, which is, of course, eas-
ier to search at colliders. The LEP experiments and the
b → sγ constraint on the parameter space in the dila-
ton dominant and scalar quasi-massless supersymmetry
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Fig. 8. Same as Fig. 7 but M1/2 = 400GeV

breaking scenarios are analyzed. Finally, we give predic-
tions for the rare decay b → sτ+τ− and neutral Higgs
boson productions. An interesting result is that one could
discover supersymmetry from b → sτ+τ− in B factories if
nature gave us a large tanβ and low mass spectra which
come out as a consequence of M-theory low-energy phe-
nomenology.
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